Global Bifurcation of Positive Equilibria in Nonlinear Population Models
نویسنده
چکیده
Existence of nontrivial nonnegative equilibrium solutions for age structured population models with nonlinear diffusion is investigated. Introducing a parameter measuring the intensity of the fertility, global bifurcation is shown of a branch of positive equilibrium solutions emanating from the trivial equilibrium. Moreover, for the parameter-independent model we establish existence of positive equilibria by means of a fixed point theorem for conical shells.
منابع مشابه
Nonlinear semelparous leslie models.
In this paper we consider the bifurcations that occur at the trivial equilibrium of a general class of nonlinear Leslie matrix models for the dynamics of a structured population in which only the oldest class is reproductive. Using the inherent net reproductive number n as a parameter, we show that a global branch of positive equilibria bifurcates from the trivial equilibrium at n = 1 despite t...
متن کاملEquilibria in structured populations.
The existence of a stable positive equilibrium state for the density rho of a population which is internally structured by means of a single scalar such as age, size, etc. is studied as a bifurcation problem. Using an inherent birth modulus n as a bifurcation parameter it is shown for very general nonlinear model equations, in which vital birth and growth processes depend on population density,...
متن کاملA bifurcation theorem for evolutionary matrix models with multiple traits.
One fundamental question in biology is population extinction and persistence, i.e., stability/instability of the extinction equilibrium and of non-extinction equilibria. In the case of nonlinear matrix models for structured populations, a bifurcation theorem answers this question when the projection matrix is primitive by showing the existence of a continuum of positive equilibria that bifurcat...
متن کاملPositive Equilibrium Solutions for Age- and Spatially-Structured Population Models
The existence of positive equilibrium solutions to age-dependent population equations with nonlinear diffusion is studied in an abstract setting. By introducing a bifurcation parameter measuring the intensity of the fertility it is shown that a branch of (positive) equilibria bifurcates from the trivial equilibrium. In some cases the direction of bifurcation is analyzed.
متن کاملOn the Dynamics of a Class of Darwinian Matrix Models
Using the methodology of evolutionary game theory (EGT), I study a class of Darwinian matrix models which are derived from a class of nonlinear matrix models for structured populations that are known to possess stable (normalized) distributions. Utilizing the limiting equations that result from this ergodic property, I prove extinction and stability results for the limiting equations of the EGT...
متن کامل